4 research outputs found

    Onduleur quasi-Z-source pour un système de traction de véhicules électriques à sources multiples : contrôle et gestion

    Get PDF
    Abstract: Power electronics play a fundamental role and help to achieve the new goals of the automobiles in terms of energy economy and environment. The power electronic converters are the key elements which interface their power sources to the drivetrain of the electric vehicle (EV). They contribute to obtaining high efficiency and performance in power systems. However, traditional inverters such as voltage-source, current-source inverters and conventional two-stage inverters present some conceptual limitations. Consequently, many research efforts have been focused on developing new power electronic converters suitable for EVs application. In order to develop and enhance the performance of commercial multiple sources EV, this dissertation aims to select and to control the impedance source inverter and to provide management approaches for multiple sources EV traction system. A concise review of the main existing topologies of impedance source inverters has been presented. That enables to select QZSI (quasi-Z-source inverter) topology as promising architectures with better performance and reliability. The comparative study between the bidirectional conventional two-stage inverter and QZSI for EV applications has been presented. Furthermore, comparative study between different powertrain topologies regarding batteries aging index factors for an off-road EV has been explored. These studies permit to prove that QZSI topology represents a good candidate to be used in multi-source EV system. For improving the performance of QZSI applied to EVs, optimized fractional order PI (FOPI) controllers for QZSI is designed with the ant colony optimization algorithm (ACO-NM) to obtain more suitable aging performance index values for the battery. Moreover, this thesis proposes a hybrid energy storage system (HESS) for EVs to allow an efficient energy use of the battery for a longer distance coverage. Optimized FOPI controller and the finite control set model predictive controller (FCS-MPC) for HESS using bidirectional QZSI is applied for the multi-source EV. The flux-weakening controller has been designed to provide a correct operation with the maximum available torque at any speed within current and voltage limits. Simulation investigations are performed to verify the topologies studied and the efficacity of the proposed controller structure with the bidirectional QZSI. Furthermore, Opal-RT-based real-time simulation has been implemented to validate the effectiveness of the proposed HESS control strategy. The results confirm the EV performance enhancement with the addition of supercapacitors using the proposed control configuration, allowing the efficient use of battery energy with the reduction of root-mean-square value, the mean value, and the standard deviation by 57%, 59%, and 27%, respectively, of battery current compared to the battery-only based inverter.L'électronique de puissance joue un rôle fondamental et contribue à atteindre les nouveaux objectifs de l'automobile en termes d'économie d'énergie et d'environnement. Les convertisseurs d’électroniques de puissance sont considérés comme les éléments clés qui interfacent leurs sources d'alimentation avec la chaîne de traction du véhicule électrique (VE). Ils contribuent à obtenir une efficacité et des performances élevées dans les systèmes électriques. Cependant, les onduleurs traditionnels tels que les onduleurs à source de tension, les onduleurs à source de courant et les onduleurs conventionnels à deux étages qui constituent les onduleurs les plus couramment utilisés, présentent certaines limitations conceptuelles. Par conséquent, de nombreux efforts de recherche se sont concentrés sur le développement de nouveaux convertisseurs d’électroniques de puissance adaptés à l'application aux véhicules électriques. Afin de développer et d'améliorer les performances des VEs à sources multiples commerciales, cette thèse vise à sélectionner, contrôler l'onduleur à source impédante et fournit une approche de gestion pour l'application du système de traction du VE à sources multiples. Une revue concise des principales topologies existantes d'onduleur à source impédante a été présentée. Cela a permis de sélectionner la topologie de l’onduleur quasi-Z-source (QZS) comme architectures prometteuses pouvant être utilisées dans les véhicules électriques, avec de meilleures performances et de fiabilité. L'étude comparative entre l'onduleur bidirectionnel conventionnel à deux étages et de celui à QZS pour les applications du VE a été présentée. En outre, une étude comparative entre différentes topologies de groupes motopropulseurs concernant les facteurs d'indice de vieillissement des batteries pour une application du VE hors route a été explorée. Ces études ont permis de prouver que la topologie de l’onduleur QZS représente une bonne topologie candidate à utiliser dans un système de VE à sources multiples. Pour améliorer les performances de l’onduleur QZS appliquées aux véhicules électriques, des contrôleurs PI d'ordre fractionnaire (PIOF) optimisés pour l’onduleur QZS sont conçus avec l'algorithme de colonies de fourmis afin d'obtenir des valeurs d'indice de performance de vieillissement plus appropriées pour la batterie. De plus, cette thèse propose un système de stockage d'énergie hybride (SSEH) pour le VE afin de permettre une utilisation efficace de l'énergie de la batterie pour une couverture de distance plus longue et une extension de son autonomie. L’optimisation du contrôleur PIOF et du contrôleur par modèle prédictif d'ensemble de contrôle fini (CMP-ECF) pour l’onduleur QZS bidirectionnel a été appliqué au VE à sources multiples avec des approches de gestion appuyées par des règles. Le contrôleur d'affaiblissement de flux magnétique du moteur a été conçu pour fournir un fonctionnement correct avec le couple maximal disponible à n'importe quelle vitesse dans les limites de courant et de tension. Des investigations et des simulations sont effectuées pour vérifier les différentes topologies étudiées et l'efficacité de la structure de contrôleur proposée avec l’onduleur QZS bidirectionnel. De plus, une simulation en temps réel basée sur Opal-RT a été mise en œuvre pour valider l'efficacité de la stratégie de contrôle SSEH proposée. Les résultats confirment l'amélioration des performances du VE avec l'ajout d'un supercondensateur utilisant la configuration du contrôle proposée, permettant une utilisation efficace de l'énergie de la batterie avec une réduction de la valeur moyenne quadratique, de la valeur moyenne et de l'écart type de 57%, 59% et 27%, respectivement, du courant de la batterie par rapport à l'onduleur connecté directement à la batterie

    Control and Estimation of Hybrid Stepper Motor with Application

    No full text
    儘管建模及控制演算法不斷進步,如何達到最大馬達效能仍有努力空間。於本研究,我們提出模型預測控制以及擴展卡曼濾波器以控制混合型步階馬達獲取高精密度定位。其中,模型預測控制律係由最小化追蹤誤差的評價函數以獲取狀態預估的控制效果。控制設計是利用定子電流以及轉子位置測量來進行狀態回授設計。這篇論文的目標在於設計一個模型估測的控制器,估測速率以及馬達的位置,並使用擴展卡曼濾波器在干擾情況下估測其相位電流。控制器以及估測器利用嵌入式技術實現於Microchip PIC18F4520,而位置控制則利用估測馬達狀態來取得。PIC18F4520 通過USART通訊連結到電腦,以傳送即時資料。數值模擬以及實驗結果顯現出令人滿意的成果,這驗證本研究的控制策略的可效性。本研究並已成功應用到腦神經外科手術的病患頭架位置調整器上Despite model improvements and different control algorithms, much work remains to be done to attain maximum motor performance. In this study, the technique, consisting of using model predictive control and extended Kalman filter, is presented for controlling hybrid stepper motors for high positioning precision. The model predictive control law is obtained by minimizing the cost function of the tracking error to perform state prediction of the phase current in a finite horizon. The control design is a state feedback design that utilizes stator current and rotor position measurements. The goal of this thesis is to design a model predictive controller that is robust to load torques, cogging forces, and other disturbances satisfying certain bounds by estimating the speed and position of the motor using an extended Kalman filter. The controller and the estimator are implemented in a Microchip PIC18F4520 microcontroller using embedded technology, and position control is achieved using the estimated motor state. The PIC18F4520 is interfaced to a PC through USART communication to send real time data to the PC for real-time measurements. Numerical simulations and experimental results have been given to show satisfactory performance and effectiveness of the proposed control strategy. The proposed control strategy is also used to control an auxiliary adjuster for a stereotactic frame system used in neurosurgery operation.Acknowledgements i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Advance of Hybrid Stepper Motor 1 1.2 Survey of Model Predictive Control 4 1.3 The Organization of Dissertation 6 Chapter 2 Fundamentals of Stepper Motors 7 2.1 Stepper Motor System and Operation 7 2.1.1 Stepper Motor System 7 2.1.2 Operation of Stepper Motor 9 2.2 Types of Stepper Motors 10 2.2.1 Variable-reluctance (VR) stepper motor 10 2.2.2 Permanent Magnet (PM) stepper motor 11 2.2.3 Hybrid Stepper Motor (HSM) 12 2.3 Modes of Operations 13 2.3.1 Full Step 13 2.3.2 Half Step 14 2.3.3 Micro -Step 15 Chapter 3 Model of Hybrid Stepper Motor 16 3.1 Principle of Hybrid Stepper Motor (HSM) 16 3.2 Mathematical Model of HSM 17 3.2.1 Park transformation 17 3.2.2 Linearization of HSM model 20 3.3 System Parameters of HSM 22 3.3.1 Torque Calculation 22 3.3.2 Load Calculation 23 3.3.3 Frictional and Rotational Acceleration Considerations 23 Chapter 4 Model Predictive Control and Extended Kalman Filter 25 4.1 Model predictive control 25 4.1.2 Fundamental Concept of Predictive Control 25 4.1.3 Single-input and Single-output System 27 4.1.4 Multi-input and Multi-output System 29 4.1.5 Prediction of State and Output Variables 31 4.1.6 Optimization Algorithm 34 4.1.7 Model Predictive and closed-loop Control System 35 4.2 State Estimation using Extended Kalman Filter 37 4.2.1 Observer 37 4.2.2 Extended Kalman Filter 38 4.3 Model Predictive Control Based on Extended Kalman Filter 41 Chapter 5 HSM Control and Estimation 43 5.1 Motor Model for Discrete Linear Predictive control 43 Based on Extended Kalman Filter 43 5.1.1 Motor Model for Discrete Extended Kalman Filter 43 5.1.2 Motor Model for Discrete Linear Predictive Control (DLPC) 44 5.2 Simulations and Experimental Results 45 5.2.1 Simulations Results 45 5.2.2 Experimental Results 47 Chapter 6 Application to Auxiliary Adjuster for Stereotactic Frame 50 6.1 Auxiliary Adjuster for Stereotactic Frame System 50 6.2 Application to Auxiliary Adjuster for Stereotactic Frame 51 6.3. Mechanical Design of the Auxiliary Adjuster for Stereotactic Frame 52 6.4. Electrical Design of the Auxiliary Adjuster for Stereotactic Frame 53 Chapter 7 Conclusions and Future Work 55 7.1 Conclusions 55 7.2 Future work 5

    Comprehensive Review on Main Topologies of Impedance Source Inverter Used in Electric Vehicle Applications

    No full text
    Power electronics play a fundamental role for electric transportation, renewable energy conversion and many other industrial applications. They have the ability to help achieve high e ciency and performance in power systems. However, traditional inverters such as voltage source and current source inverters present some limitations. Consequently, many research e orts have been focused on developing new power electronics converters suitable for many applications. Compared with the conventional two-stage inverter, Z-source inverter (ZSI) is a single-stage converter with lower design cost and high e ciency. It is a power electronics circuit of which the function is to convert DC input voltage to a symmetrical AC output voltage of desired magnitude and frequency. Recently, ZSIs have been widely used as a replacement for conventional two-stage inverters in the distributed generation systems. Several modifications have been carried out on ZSI to improve its performance and e ciency. This paper reviews the-state-of-art impedance source inverter main topologies and points out their applications for multisource electric vehicles. A concise review of main existing topologies is presented. The basic structural di erences, advantages and limitations of each topology are illustrated. From this state-of-the-art review of impedance source inverters, the embedded quasi-Z-source inverter presents one of the promising architectures which can be used in multisource electric vehicles, with better performance and reliability. The utilization of this new topology will open the door to several development axes, with great impact on electric vehicles (EVs)

    Dual-Source Bidirectional Quasi-Z-Source Inverter Development for Off-Road Electric Vehicles

    No full text
    In this paper, a battery pack and a supercapacitor bank hybrid energy storage system (HESS) with a new control configuration is proposed for electric vehicles (EVs). A bidirectional quasi-Z-source inverter (Bq-ZSI) and a bidirectional DC-DC converter are used in the powertrain of the EV. The scheme of the control for the proposed HESS Bq-ZSI using finite control set model predictive control (FCS-MPC) is first deduced to enhance the dynamic performance. With the idea of managing battery degradation mitigation, the fractional-order PI (FOPI) controller is then applied and associated with a filtering technique. The Opal-RT-based real-time simulation is next executed to verify the performance and effectiveness of the proposed HESS control strategy. As a result, the proposed HESS Bq-ZSI with this control scheme provides a quick response to the mechanical load and stable DC link voltage under the studied driving cycle. Moreover, the comparative results also show that the proposed HESS Bq-ZSI equipped with the new control configuration enables the reduction of the root-mean-square value, the mean value, and the standard deviation by 57%, 59%, and 27%, respectively, of the battery current compared to the battery-based inverter. Thus, the proposed HESS Bq-ZSI using these types of controllers can help to improve the EV system performance
    corecore